Applying Genotyping by Sequencing (GBS) to Corn Genetics and Breeding

Peter Bradbury

USDA/Cornell University

Genotyping by sequencing (GBS) makes use of high through-put, short-read sequencing to provide low cost genotyping with high information content. To reduce problems in maize caused by a large genome size, reduced representation libraries are produced using a restriction enzyme that targets genomic regions while multiplexing with barcodes reduces the cost for individual samples. Using this technology DNA samples can be genotyped at over 2 million sites. Challenges include the need for a sophisticated bioinformatics pipeline, a relatively high level of missing data and under sampling of heterozygotes. Fortunately, open-source freely available software and imputation methods exist to address these challenges. Genotypes obtained using GBS can be used to examine relationships among lines, perform linkage and genome wide association studies, and perform genomic selection. While GBS has mostly been used to discover and score SNPs, it can be used to study other types of structural variants as well.

Applying Genotyping by Sequencing (GBS) to Corn Genetics and Breeding

Peter Bradbury USDA-ARS / Cornell Univ Ithaca, NY Goal: to create a public genotyping – informatics platform based on next-generation sequencing

Background

Genotyping by sequencing (GBS) in any large genome species requires reduction of genome complexity.

I. Target enrichment

- Long range PCR of specific genes or genomic subsets
- Molecular inversion probes
- Sequence capture approaches hybridization-based (microarrays)

II. Restriction Enzymes (REs)

Technically less challenging

 Methylation sensitive REs filter out repetitive genomic fraction

What is genotyping-by-sequencing (GBS)?

(→) 64-base sequence tag

- Reduced representation approach inspired by Altshuler et al. (2000)
- Focuses NextGen sequencing power to ends of restriction fragments
- Scores both biallelic markers and presence/absence markers

The GBS protocol is simple and robust

Reference-based GBS bioinformatics pipeline

Buckler Lab for Maize Genetics and Diversity Institute for Genomic Diversity

Main Menu

TASSEL

Home People Research Bioinformatics Publications Germplasm Jobs About Us Links Contact Us Site Map Repository Search Site Search Search	Tassel Version 4.0 (Larger Data Sets / Faster) (Build: Februal Launch TASSEL 4.0 Launch TASSEL 4.0 (950Mb Heap Size) (Use if Error Creating & TASSEL 4.0 Standalone (Using Git - Recommended!) (Do Not Tassel Version 3.0 (Build: January 10, 2013 Require Launch TASSEL 3.0 Launch TASSEL 3.0 Launch TASSEL 3.0 (512Mb Heap Size) TASSEL 3.0 Standalone (Using Git - Recommended!) (For GBS Tassel Documentation	TY 14, 2013 Requires: Java 1.6) Java Virtual Machine) Use for GBS Pipeline - Under Development.) res: Java 1.6)
Current Location Home	Tassel 3.0 User's Guide (Updated: December 22, 2011) Tassel Tutorial Data Visit Tassel User Group Tassel FAQs Tassel 4.0 Change History Tassel Pipeline Documentation Tassel 3.0 GBS Pipeline Document (Updated December 19, 1012) Tassel 3.0 UNEAK Pipeline Document (Updated May 11, 2012)	GBS Pipeline functions only available via the command line Open source, hosted at sourceforge.net

TT - 11/TT 1 - 134

Pros & Cons of GBS

- Pros
 - obtain large amount of data very quickly
 - inexpensive:
 www.igd.cornell.edu/index.cfm/page/projects/GBS/GBSpricing.htm
 - relatively free of ascertainment bias
 - can assay regions absent from reference genome
- Cons
 - large amount of missing data (~40-80% with ApeKI)
 - difficult to call heterozygotes in highly heterozygous, unrelated individuals
 - technically missing confounded with biologically missing

Zea samples genotyped with GBS

- 30,000 Zea samples (ApeKI)
 - > 40% RILs from bi-parental families
 - > 35% unrelated inbred lines
 - > 25% outcrossed (heterozygous) individuals
 - maize landraces & teosinte

- 2.2 million SNPs (after filtering error-prone)
- 73% missing data (27% call rate)

GBS error rates vs. Maize 50K SNP Chip

- 7,254 SNPs in common
- 279 maize inbreds in common ("Maize282" panel)

Comparison to 50K SNPs	Mean Error Rate (per SNP)	Median Error Rate (per SNP)
Filtered GBS genotypes		
All genotypic comparisons:	1.18%	0.93%
Homozygotes only:	0.58%	0.42%

HMM for calling hets/correcting errors in biparental RIL populations

Physical Position on Chr1 (bp)

Simulation Results

S4 RILs, bulk DNA sample of 4 progeny

type of error	hom -> hom	hom -> het	het -> hom
before imputation	.0020	.0020	.8009
after imputation	.00002	.00049	.0146

S1 families, bulk DNA sample of 4 progeny

type of error	hom -> hom	hom -> het	het -> hom
before imputation	.0020	.0020	.8017
after imputation	.0000051	.0036	.0106

Use of imputed markers for joint linkage analysis of NAM

- Impute markers every 0.2 cm using
- 1106 SNPs Illumina GoldenGate Array
- GBS build 1, 600K SNPs
- GBS build 2, 2.2 million SNPs

Average support interval from regression model

Data	20 terms	30 terms
Array	5.03 cM	4.95 cM
Build 1	2.97 cM	3.49 cM
Build 2	2.95 cM	2.9 cM

Imputation in unrelated inbred lines

 Aided by limited number of ancestral haplotypes in modern maize

Imputation in unrelated inbred lines

 Aided by limited number of ancestral haplotypes in modern maize

Ed Buckler

- Performed high coverage GBS on 195 diverse inbreds
- Imputation via a nearest neighbor approach
 - based on bit arithmetic, so extremely fast
 - sliding windows of 4096, 2048, 1024 & 512 sites
 - disagreements between window sizes set to missing
 - nearest neighbors with identity-by-state >= 95%
 - minimum of 2 nearest neighbors
 - missing SNP imputed to consensus of nearest neighbors
- Median imputation error rate (by masking): 0.4%

GBS error rates vs. Maize 50K SNP Chip

- 7,254 SNPs in common
- 279 maize inbreds in common ("Maize282" panel)

Comparison to 50K SNPs	Mean Error Rate (per SNP)	Median Error Rate (per SNP)
Filtered GBS genotypes		
All genotypic comparisons:	1.18%	0.93%
Homozygotes only:	0.58%	0.42%
Imputed GBS genotypes:		
All genotypic comparisons:	6.94%	4.07%
Homozygotes only:	4.62%	1.83%

Most GBS SNPs in maize inbreds are rare

Cinta Romay

Distribution of >570K SNPs across 2,709 lines

GBS explains genetic relationships among maize inbreds

Multidimensional Scaling (MDS) analysis of USDA maize inbreds using 660K GBS markers

B73

Less ascertainment bias than array-based SNPs?

Ram Sharma

Non stiff stalk,nss (106) Stiff stalk, ss (28) Tropical/sub tropical (66) Popcorn (9) Sweet corn (6) Unclassified(67) B73 (ss) Mo17 (nss)

Illumina 55K 5 R109B 2 Tzi2(Kv226 **B7**3 0.5 Coordinate 2 8 Ki21 CI91B NC362 CI187-5 Yu796NS 무 C103 15 Mo1 -0.5 ۵ø 1.0 -1.0 0.5 Coordinate 1

Less ascertainment bias than array-based SNPs?

Ram Sharma

Non stiff stalk, nss (106) Stiff stalk, ss (28) Tropical/sub tropical (66) Popcorn (9) Sweet corn (6) Unclassified(67) B73 (ss) Mo17 (nss)

GWAS directly hits known Mendelian traits

The best hit for kernel color lies within Y1

GWAS of a more complex trait directly hits known flowering time genes

eds

Alex Lipka

Zhiwu Zhang

Accurate genomic prediction of height based on GBS data

2800 diverse breeding lines

Jason Peiffer

Characterize structural variations in 19,101 maize inbred lines

Mapping tags that do not align to reference

Read depth compared to B73 reference

Fei Lu

Acknowledgements

GBS Protocol & Lab Work:

Rob Elshire (Cornell) Sharon Mitchell (Cornell) Charlotte Acharya (Cornell) Wenyan Zhu (Cornell) Lisa Blanchard (Cornell)

GBS Bioinformatics:

Ed Buckler (USDA/Cornell) Peter Bradbury (USDA/Cornell) Terry Casstevens (Cornell) Rob Elshire (Cornell) Fei Lu (Cornell) Yang Zhang (Cornell) Dallas Kroon (USDA/Cornell) Dallas Kroon (USDA/Cornell) Aobert Bukowski (Cornell) Jaroslaw Pillardy (Cornell) Qi Sun (Cornell)

Statistical Genetics:

Zhiwu Zhang (Cornell) Alex Lipka (USDA/Cornell) Peter Bradbury (USDA/Cornell) Ed Buckler (USDA/Cornell)

Analyses:

Cinta Romay (Cornell) Jason Peiffer (Cornell) Ram Sharma (IHBT) Jason Morales (Purdue)

Maize NAM population & phenotypes:

Ed Buckler (USDA/Cornell) Nick Lepak (USDA/Cornell) NSF Maize Diversity Project (Panzea)

