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Genotyping by sequencing (GBS) makes use of high through-put, short-read sequencing to 
provide low cost genotyping with high information content. To reduce problems in maize caused 
by a large genome size, reduced representation libraries are produced using a restriction enzyme 
that targets genomic regions while multiplexing with barcodes reduces the cost for individual 
samples. Using this technology DNA samples can be genotyped at over 2 million sites. 
Challenges include the need for a sophisticated bioinformatics pipeline, a relatively high level of 
missing data and under sampling of heterozygotes. Fortunately, open-source freely available 
software and imputation methods exist to address these challenges. Genotypes obtained using 
GBS can be used to examine relationships among lines, perform linkage and genome wide 
association studies, and perform genomic selection. While GBS has mostly been used to discover 
and score SNPs, it can be used to study other types of structural variants as well. 

 



Applying Genotyping by Sequencing 
(GBS) to Corn Genetics and Breeding 

Peter Bradbury 
USDA-ARS / Cornell Univ 

Ithaca, NY 



Goal: to create a public genotyping – informatics 
platform based on next‐generation sequencing 
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What is genotyping-by-sequencing (GBS)? 

• Reduced representation approach inspired by Altshuler et al. (2000)  
• Focuses NextGen sequencing power to ends of restriction fragments 
• Scores both biallelic markers and presence/absence markers 



The GBS protocol is simple and robust 
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Primers 

Barcode adapter 

Common adapter 

1.  Plate DNA &  
     adapter pair 

4.  Pool 
       DNAs 

5. PCR 
6. Cleanup 

7.  Evaluate fragment sizes 

Size stds. 

8.  Run on single lane 
      of Illumina flowcell 

Elshire et al. 2011. PLoS ONE 

2.  Digest DNA with RE 
(e.g. ApeKI) 

3.  Ligate adapters 

Rob Elshire 
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Sequence Reads in FASTQ format 



Jeff Glaubitz 

Reference-based GBS bioinformatics pipeline 
Discovery 

Tag Counts 

SNP Caller 
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Tags by Taxa  
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Filtered 
Genotypes 

Tags on 
Physical Map 

Terry Casstevens 

Ed Buckler 

Production 
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Genotypes 

James Harriman 



GBS Pipeline functions only available 
via the command line 

Open source, hosted at sourceforge.net 



Pros & Cons of GBS 

• Pros 
– obtain large amount of data very quickly  
– inexpensive: 

www.igd.cornell.edu/index.cfm/page/projects/GBS/GBSpricing.htm 

– relatively free of ascertainment bias 
– can assay regions absent from reference genome 

• Cons 
– large amount of missing data (~40-80% with ApeKI) 
– difficult to call heterozygotes in highly heterozygous, 

unrelated individuals 
– technically missing confounded with biologically 

missing 

http://www.igd.cornell.edu/index.cfm/page/projects/GBS/GBSpricing.htm


Zea samples genotyped with GBS 

• 30,000 Zea samples (ApeKI) 
 40% RILs from bi-parental families 
 35% unrelated inbred lines 
 25% outcrossed (heterozygous) individuals 

 maize landraces & teosinte 

• 2.2 million SNPs (after filtering error-prone) 

• 73% missing data (27% call rate) 



GBS error rates vs. Maize 50K SNP 
Chip 

• 7,254 SNPs in common 
• 279 maize inbreds in common (“Maize282” 

panel) 

Comparison to 50K SNPs Mean Error 
Rate (per SNP) 

Median Error 
Rate (per SNP) 

Filtered GBS genotypes 

All genotypic comparisons: 1.18% 0.93% 
Homozygotes only: 0.58% 0.42% 



HMM for calling hets/correcting errors in 
biparental RIL populations 
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Simulation Results 

type  of error hom -> hom hom -> het het -> hom 

before imputation .0020 .0020 .8009 

after imputation .00002 .00049 .0146 

S4 RILs, bulk DNA sample of 4 progeny 

type  of error hom -> hom hom -> het het -> hom 

before imputation .0020 .0020 .8017 

after imputation .0000051 .0036 .0106 

S1 families, bulk DNA sample of 4 progeny 



Use of imputed markers for joint 
linkage analysis of NAM 

• Impute markers every 0.2 cm using  
• 1106 SNPs Illumina GoldenGate Array 
• GBS build 1, 600K SNPs 
• GBS build 2, 2.2 million SNPs 

Data 20 terms 30 terms 

Array 5.03 cM 4.95 cM 

Build 1 2.97 cM 3.49 cM 

Build 2 2.95 cM 2.9 cM 

Average support interval from regression model 



Imputation in unrelated inbred lines 
• Aided by limited number of ancestral 

haplotypes in modern maize 



Imputation in unrelated inbred lines 
• Aided by limited number of ancestral 

haplotypes in modern maize Ed Buckler 

• Performed high coverage GBS on 195 diverse inbreds 
• Imputation via a nearest neighbor approach 
 based on bit arithmetic, so extremely fast 
 sliding windows of 4096, 2048, 1024 & 512 sites 

• disagreements between window sizes set to missing 
 nearest neighbors with identity-by-state >= 95% 
 minimum of 2 nearest neighbors 
 missing SNP imputed to consensus of nearest neighbors 

• Median imputation error rate (by masking): 0.4% 



GBS error rates vs. Maize 50K SNP 
Chip 

• 7,254 SNPs in common 
• 279 maize inbreds in common (“Maize282” 

panel) 

Comparison to 50K SNPs Mean Error 
Rate (per SNP) 

Median Error 
Rate (per SNP) 

Filtered GBS genotypes 

All genotypic comparisons: 1.18% 0.93% 
Homozygotes only: 0.58% 0.42% 

Imputed GBS genotypes: 

All genotypic comparisons: 6.94% 4.07% 

Homozygotes only: 4.62% 1.83% 



Most GBS SNPs in maize inbreds are rare 

Distribution of >570K SNPs across 2,709 lines 

MAF  Prop. of SNPs 
<1% 24% 

1% to 5% 28% 
5% to 10% 12% 

>10% 36% 
Cinta Romay 



GBS explains genetic relationships among maize inbreds 
Multidimensional Scaling (MDS) analysis of USDA maize inbreds using 660K GBS markers 

tropical 
landraces 

non-stiff stalk 

sweet corn 

popcorn stiff stalk 

Cinta Romay 



Phylogenetic Tree of public and ex-PVP inbreds generated using 
GBS data 
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created by Jason Morales 



Less ascertainment bias than array-based SNPs? 

Ram Sharma 
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Less ascertainment bias than array-based SNPs? 
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GWAS directly hits known Mendelian traits 

The best hit for kernel color lies within Y1  
 

GWAS of white vs. yellow kernels in 1,595 USDA Ames inbreds  

Y1 

Cinta Romay 



GWAS of a more complex trait directly hits known 
flowering time genes 

Zhiwu Zhang 

Alex Lipka 

ZmRap2.7 
(2.6 Kb) 

ZmCCT 
(2.4 Kb) 

80 SNPs 

1 SNP 

vs. 

GWAS of growing degree days to silking in 2,279 inbreds 

 
 



Accurate genomic prediction of height based 
on GBS data 

R2= 0.82 

USDA Ames Inbreds 
Ridge-Regression BLUP 

2800 diverse breeding lines 

Jason Peiffer 



Characterize structural variations in 
19,101 maize inbred lines 
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24,000 CPU hours 

(Absence in B73) 

Mapping tags that do not align to reference 

1.4 million 

Read depth compared to B73 reference 

Fei Lu 
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