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                           Abstract 

To be useful, adding epistatis to a prediction model must increase predictive power.  The 
objectives of this study were to determine: 1) using partial least squares techniques, whether the ability 
to predict performance can be increased by including epistasis in a prediction model; 2) whether 
relaxing the probability level for inclusion of a marker or interaction in a model from 0.001 to 0.01 to 
0.05 would increase predictive power; 3) whether the proportion of variability accounted for could be 
raised to a level useful in breeding; 4) whether molecular marker models based on one year’s 
phenotypic data could be used to predict performance in a second year; and 5) whether models based 
on per se data would be useful in predicting testcross performance. Data for protein, oil, and starch, 
were obtained from 500 S2 lines and their testcrosses from the crosses of Illinois High Oil (IHO) x 
Illinois Low Oil (ILO) and of Illinois High Protein (IHP) x Illinois Low Protein (ILP) corn (Zea mays 
L.) strains.  Increasing the probability level for detection of significant markers and epistatic effects 
from 0.001 to 0.01 to 0.05 significantly increased predictive power. Adding epistasis to a model 
significantly increased predictive power when models were based on data over all year and locations, 
when models based on one year were used to predict a second year, or when per se data were used to 
predict testcross performance. With epistasis in the model and P=0.05, correlations of predicted and 
observed means were high enough to suggest they might be useful in breeding.  Marker models based 
on one year’s data produced correlations nearly as high as phenotypic correlations between years. 
While epistasis significantly improved performance of models used to predict testcross performance 
from per se performance, the proportion of variability accounted for was somewhat lower than when 
predicting performance in different years. 
 

 
Introduction 

 Epistasis is defined as the interaction between alleles at different loci. Epistasis was shown to 
be present for oil, protein, and starch in crosses of Illinois High Oil (IHO) x Illinois Low Oil (ILO) and 
of Illinois High Protein (IHP) x Illinois Low Protein (ILP) strains of corn (Zea mays L.) (Dudley, 
2008).  There have been a number of other studies demonstrating the presence of epistasis in a number 
of species for many different traits (e.g., Xu and Jia, 2007; Radoev et al., 2008; Rouzic et al. 2008; 
Melchinger et al. 2008; Melchinger et al., 2007). Thus, epistasis is important.  However, there is no 
clear method for utilizing information from epistatic interactions to predict performance in a breeding 
program and no studies exist where epistasis was included in models used for prediction of 
performance. For knowledge of presence of epistasis to be useful in breeding for quantitative traits, 
adding epistasis to a model used to predict performance should increase the accuracy of prediction.   In 
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addition, useful predictive models should be effective in predicting performance in years other than 
those in which the models were developed.  For certain traits, prediction of testcross performance from 
per se performance would be useful. 
 
 In any study involving large numbers of molecular markers, collinearity among markers and 
over-parameterization of models become problems.  These problems are amplified when all possible 
two-way interactions are considered.  In searching for a way to reduce this problem and to develop a 
prediction model, we used partial least squares.  Partial least squares is a method for analyzing data in 
which there are more predictor variables than observations and/or where there is collinearity in the 
predictor variable matrix.  The method was first developed in the 1960’s and 1970’s to address 
problems in econometrics.  It was subsequently widely used in chemometric and spectrometric 
modeling (Rosipal and Kramer, 2006). More recently, partial least squares has been successfully 
applied to problems in genomics and proteomics (Boulesteix and Strimmer, 2007; Perez-Enciso and 
Tenenhaus, 2003; Perez-Enciso et al., 2003).  Although the method would seem to be well adapted to 
problems of prediction of performance in a marker assisted breeding program, particularly where large 
numbers of markers are used, no reports of such use were found in the literature. However, Bjornstad 
et. al. (2004a, 2004b) used partial least squares to relate marker and phenotypic information in QTL 
analysis and Mateo, et al. (2006) used it in analyzing QTL x environment interactions.  
 
 Another question of importance in a marker breeding program is the number of markers to use 
and whether to use all possible markers. Based on simulation results, Bernardo and Yu (2007) 
suggested that using all markers in a set would lead to greater gain than using only those identified as 
significant. In a simulation study, Hospital et al. (1997) found that reducing the type I error probability 
level for inclusion of a marker in a model increased relative efficiency of marker assisted selection.   
 

The objectives of this paper are to determine: 1) using partial least squares techniques, whether 
the ability to predict performance can be increased by including epistasis in a prediction model; 2) 
whether increasing the numbers of markers and marker x marker epistatic interactions by relaxing the 
probability level (P) for inclusion of  a marker or interaction in a model would increase predictive 
power; 3) whether the proportion of variability accounted for could be raised to a level useful in 
breeding; 4) whether a model based on  results from one year can be effectively used to predict a 
second year’s performance; and 5) whether models based on per se data would be useful in predicting 
testcross performance. 
 

     Materials and Methods 

 Details of the development of progenies and markers used in this study have been reported as 
have the experimental designs used (Laurie et al., 2004; Clark et al. 2006; Dudley et al., 2007). To 
summarize, crosses were made between plants (5-7 plants from each parental population) from 
generation 70 of the IHO and ILO corn strains and between plants from generation 70 of the IHP and 
ILP strains. The IHOxILO cross was random-mated 10 times while the IHPxILP cross was random-
mated 7 times. Five hundred S2 lines were developed from each cross. For protein, oil, and starch, 
each line was evaluated as a line per se (PS) and in a testcross (TC) to a Monsanto inbred line tester. 
The IHOxILO lines per se and testcross progenies were evaluated at three locations for two years for 
oil, protein, and starch. The IHPxILP lines were evaluated as lines per se for two years at three 



 

locations while the testcrosses were evaluated for only one year in three locations for oil, protein, and 
starch. In each year location combination, an α (0, 1) design with two replications and 50 blocks of 10 
lines per replication was used. Plots consisted of 15 plants in a row 5.3 m long with 0.76 m between 
rows.  Starch, protein, and oil concentrations were measured on a sample of grain from each plot using 
near-infrared transmittance.  
 

For each S2 line, DNA was extracted from seedling tissue germinated from a bulk of about 50 
seeds and SNP genotypes were obtained using procedures described by Laurie et al. (2004).  Markers 
were chosen largely on the basis of allele frequency difference between the parents of the cross. The 
frequencies were estimated by genotyping a random sample of 24 individuals each from the IHP, ILP, 
IHO, and ILO populations as described by Laurie et al. (2004) for IHO and ILO. For the IHOxILO 
line, 479 SNP markers were used while 499 SNP markers were used for the IHPxILP progenies. 

 
As in Dudley (2008), PROC MIXED in SAS software (version 9.1, SAS Institute Cary, NC), 

was used to calculate PS or TC line BLUPs of all phenotypic traits. Then, SAS PROC GLM was used 
to estimate single-locus and pair-wise marker effects. The model for each single locus analysis was 

 
Trait = Mi + Residual (i = 1, 2, …, m) (1) 

 
where Trait is a line BLUP value, Mi is the ith marker genotype, and m is the total number of markers. 
For pair-wise marker analysis the model was 

 
Trait = Mi + Mj + Mi * Mj + Residual (i = 1, 2, …, m-1; j = i+1, ….., m) (2)  

 
where Mi * Mj indicates the interaction effect of the Mi and Mj marker genotypes. In the above 
models, marker and marker interaction effects were assumed fixed. Model (1) was used to identify 
significant markers; whereas model (2) was used to identify significant interaction effects, irrespective 
of the significance of the main effects. That is, in model (1), the single-locus marker effect is 
unadjusted for any interaction effect; while, in model (2), the interaction effect is adjusted for the 
single-locus marker main effects. For both models (1) and (2), significant markers and interactions 
were identified at three probability levels: P=0.001, 0.01, and 0.05. 

 
Markers and interactions significant at each of these levels were then entered into two types of 

prediction models comprised of: (1) significant single-locus marker predictors (NOEP, no epistasis 
models); or (2) significant single-locus plus significant pair-wise marker interaction predictors (EP, 
epistasis models). Because of sampling, some pair-wise marker interaction genotypic arrays had empty 
cells. These interactions were not included in the EP prediction models.   

 
The prediction models were evaluated by partial least squares regression using SAS PROC PLS 

as described by Dudley and Johnson (2009). In partial least squares regression, the original data are 
decomposed into factors extracted from the dependent x predictor variables cross products matrix. 
With stipulation of the appropriate options, PROC PLS produces a prediction model, comprised of a 
minimum number of factors (not greater than 15), which is not significantly different at the 0.10 
probability level from the model with the lowest mean square error of prediction. In the analysis of all 
models, the following PROC PLS options were stipulated: method=simpls; cv=split; cvtest.  The 
dependent variables in the models were the testcross (TC) and per se (PS) BLUP values for protein, 



 

oil, and starch for each of the 500 lines in the population sample from the IHPxILP cross and the 500 
lines from the population sample from the IHOxILO cross.  

 
NOEP and EP prediction models were evaluated at each probability level for each trait in the 

TC and PS populations. In addition, NOEP models containing all markers (P=1.0) were evaluated for 
each trait of the TC and PS populations. Because of software limitations on the number of variables 
accommodated, evaluation of EP models with all possible two-way interactions was not possible. Note 
that the prediction models have the form of multiple regression equations in which the independent 
variables entered are conditional upon significance in preliminary single-locus or pair-wise marker 
analyses. 

 
For each model evaluation, 500 bootstrap (random sampling with replacement) samples were 

obtained in which the first 400 lines from each sample were used for calibration and the remaining 100 
lines comprised the target set for prediction. Pearson correlations between predicted and observed 
values of the 100 lines were calculated using PROC CORR in SAS. Thus, 500 correlations of observed 
with predicted values were obtained for each model. Using PROC MEANS in SAS, means, 95% 
confidence intervals and minimum and maximum values for the 500 correlations were obtained. 
Differences between models, probability levels, or crosses were declared significant if the 95% 
confidence intervals did not overlap. For ease of presentation, correlations were squared to obtain the 
percentage of variability accounted for by a particular model (r2) and comparisons between models 
were made using r2 values. 

 
As an additional indication of the importance of marker interactions, the number of significant 

interactions containing 0, 1, or 2 markers significant in single-locus tests was determined as well as the 
total number of markers involved in significant interactions. 
  

In addition to the work just described, prediction models were developed using individual year 
data to predict alternate years.  In this study, BLUPs were calculated for each individual year using 
data from all locations within a year for oil, protein, and starch. Both per se and testcross data were 
used for the IHOxILO cross. Only per se data were used for the IHPxILP cross because testcross data 
were available from only one year.  Based on marker data and individual year BLUPs, both NOEP and 
EP models developed using PROC PLS were used to predict a second year’s performance.  For the 
IHOxILO cross, data from 2001 were used to predict performance in 2002, and data from 2002 were 
used to predict performance in 2001.  In the IHPxILP cross 2002 data were used to predict 2003 
performance and 2003 data were used to predict 2002 performance.  In all cases, only markers and 
interactions significant at the 0.05 probability level were used.  Pearson correlations between predicted 
and observed and between BLUPs in different years were obtained for 100 bootstrap samples in each 
comparison.   
 
 The importance of epistasis in predicting testcross performance based on per se data was 
studied.  In this study, marker data and per se performance data were used to develop models which 
were then used to predict testcross performance for both EP and NOEP models.  Phenotypic 
correlations between per and testcross data were also obtained.  As in the study comparing years, 100 
bootstrap samples were used.  In all cases data were expressed as percent of the variability accounted 
for based on a squared Pearson correlation. 

 



 

Results and Discussion 
 

Significant genetic variance was found for all traits and heritabilities were high enough to allow 
identification of QTL (Table 1). Data in Table 1 were reported by Dudley (2008).  

 
Increasing the p-value threshold (P) used to determine marker or interaction effects for 

inclusion in the PLS analysis from 0.001 to 0.01 significantly increased the percentage of variability 
accounted for in all comparisons except for the difference between the 0.001 and 0.01 probability 
levels for starch PS in the IHPxILP cross (Table 2). For the NOEP model, changing P from 0.01 to 
0.05 significantly increased the percentage of variability accounted for in all comparisons. For starch, 
increasing P from 0.01 to 0.05 for the EP model significantly increased the percentage of variability 
accounted for in both per se and testcross models in both crosses, but for protein, a P increase from 
0.01 to 0.05 did not increase variability accounted for in either testcross progeny or in the IHOxILO 
cross for per se progeny. Only the per se progeny in IHPxILP failed to show a significant increase for 
oil. For all comparisons, the increase in variability accounted for from 0.001 to 0.01 was greater than 
from 0.01 to 0.05. Although data were not obtained for P values >0.05 for the EP model, the small 
change for the EP model from 0.01 to 0.05, and the small, inconsistent change from 0.05 to 1.0 for the 
NOEP model, suggest that increasing P beyond 0.05 is not likely to improve prediction accuracy. 
Thus, while most QTL studies have stressed the importance of reducing Type 1 errors by using 
stringent probability levels, these data suggest that for prediction of performance, Type 2 errors, within 
limits, may be as important as Type 1 errors. This result agrees with the results of a simulation study 
by Hospital et al. (1997) who found that increasing the probabilities of allowing entry of a marker and 
keeping a marker in the model increased relative efficiency of selection. Bernardo and Yu (2007) 
suggested, based on simulation results, that increasing the number of markers included in the model to 
P=1.0 (using all markers) should increase gain relative to using markers selected at P=0.2, 0.3, or 0.4. 
They did not consider epistatic interactions. However, in this study, including all markers in the model 
significantly increased the percentage of variability accounted for in only six of twelve comparisons. 
Even when all markers were included in a NOEP model, the percentage of variability accounted for 
was less than for an EP model with P=0.05 except for protein per se and starch per se in the IHOxILO 
cross further indicating the importance of epistasis.  Because at P=0.05 percentage of variability 
accounted for was generally maximized, P=0.05 was used in studying prediction between years and 
between per se and testcross performance.   

 
Did including epistasis in the model increase the percentage of the variability accounted for? 

To answer this question, four different traits, two different crosses, three different probability levels 
and, two types of progenies were used. Thus, there was replication across traits, types of progenies, 
and crosses.  In addition, the importance of epistasis in predicting performance in a second year using a 
first year’s data and in predicting testcross performance from per se performance was measured. When 
compared to the NOEP model, the addition of epistasis significantly increased the percentage of 
variability accounted for in all cross-trait-generation-probability level combinations when: 1) all data 
were used for prediction (Table 3); when prediction of performance in a second year was measured 
(Table 4); and when testcross performance was predicted from per se performance (Table 5). 
Thus, in all cases, including epistasis in the model increased its predictive efficacy.  

 
To compare traits when all data were used to develop models, the mean gain in percentage of 

variability accounted for by including epistasis in the model for each trait at each probability level was 



 

obtained by averaging over types of progeny and crosses.  Gains for oil were slightly higher than for 
protein and starch (Table 3).  Average gain for the IHPxILP cross was approximately twice that for the 
IHOxILO cross regardless of P level. The reason for the greater impact of epistasis in the IHPxILP 
cross is not apparent.  Unlike the results when all data were used, the gain due to including epistasis in 
the model was greater in IHOxILO than in IHPxILP when one year was used to predict a second year.   
The reason for the difference between all data and the year prediction data in the value of epistasis in 
different crosses is not apparent although it should be noted that the years involved in the IHOxILO 
cross were 2001 and 2002 and the years involved in the IHPxILP cross were 2002 and 2003.  The gain 
from including epistasis in the model was generally smaller for prediction of testcross performance 
from per se performance than for the other two predictions (Table 5).  In addition, the percent of 
variability accounted for was lower.  This result may be due to the effect of the tester on the epistatic 
effects. 

 
The importance of epistasis suggests that interacting gene networks may be important. If so, 

markers included in significant interactions may not be significant in single marker analysis. Nearly all 
the markers used (a minimum of 475/479 for IHOxILO and 497/499 for IHPxILP) were included in a 
significant interaction at the P=0.05 level (Table 6) in the analysis of all data even though many fewer 
were significant in the single marker analysis. Nearly half the significant interactions for all traits 
included only one significant marker (Table 6). For oil, protein, and starch, the percentage of 
interactions with no significant markers was higher in the IHOxILO cross than in the IHPxILP cross. 
Conversely the percentage of interactions with both markers significant was higher in IHPxILP than in 
IHOxILO. The reason for the difference between crosses is not clear. Because as many as 40 percent of 
the significant interactions did not contain a significant marker, nearly half contained only one 
significant marker, and nearly all markers were involved in a significant interaction, evaluation of all 
possible marker interactions rather than just those between markers found significant in single marker 
analysis is important. This result agrees with the conclusion of Xu and Jia (2007) that whether two loci 
interact does not depend on whether or not the loci have individual main effects and casts doubt on the 
common practice of estimating epistatic effects only for pairs of loci of which both have significant 
main effects.  The differences between crosses in the increased predictive efficacy by including 
epistasis and the difference between results from using all data and predicting a second year from a 
first should provide a cautionary tale for systems biologists. Systems may be context dependent, i.e. 
results may vary depending on the cross and the environments studied. 

 
With regard to the third objective dealing with determination of usefulness of the models 

in plant breeding, note again that addition of epistatic terms in the model consistently produced a gain 
in predictive accuracy from a non-epistatic base. Though these gains are statistically significant, two 
questions remain: (1) are the general magnitudes of the base correlations large enough to indicate 
practical prediction accuracy? and (2) does the gain in accuracy justify inclusion of epistatic terms in 
the model? To address these questions, we compare the results reported herein from analysis with 
results reported in the literature regarding the correlations between early and late generation testcross 
yields in corn. Jensen et al. (1983) compared S2 and S5 generation testcrosses at a number of locations 
and reported r2 values that ranged from 19.4 to 67.2 percent; Hallauer and Lopez-Perez (1979) found r2 
values ranging from 2.9 to 31.4 percent in correlations of S1 and S8 testcross yield; and Rodriquez and 
Hallauer (1991) reported an r2 value of 9.6 percent for the correlation of S0 and S4 testcross yield. The 
mean values obtained in this study at the P=0.05 level (Table 2) using the models including epistasis, 
whether using all phenotypic data, predicting one year from another, or predicting testcross 



 

performance from per se performance, are as high or higher than those reported for early generation 
testing. Furthermore, the minimum values obtained for epistatic models at the P=0.05 level (Data not 
shown) are generally in the range of values reported for early generation testing for grain yield. 

 
Based on our long familiarity with the corn breeding industry, we believe that early generation 

testing is a wide-spread, common practice, and, because of its pervasiveness, has been found to be 
useful in prediction of advanced generation testcross performance. Hence, because the r2 values 
reported herein are well within the range of values reported for early generation testing, we conclude 
that prediction from marker models similar to those described here will be useful.  

 
To evaluate the usefulness of epistatic models in predicting a second year’s performance from 

the first year’s performance, epistatic models were compared with the percent of variability accounted 
for by the phenotypic correlations between years (Table 4).  The increased variability accounted for by 
the phenotypic correlation was higher for the IHPxILP cross than for the IHOxILO cross for all traits.  
For the IHOxILO cross, the predicted model accounted for from 85-99 percent of the variability 
accounted for by the phenotypic correlation while for the IHPxILP cross only about 80 percent of the 
variability accounted for by the phenotypic correlation was accounted for by the marker model.  Thus, 
correlations for the marker based model were nearly as good as the phenotypic correlations in both 
crosses.  The percent variability accounted for in a second year based on a first year’s data for oil in the 
IHOxILO cross and for protein and starch in the IHPxILP cross seem high enough to be useful. 
  

The lowest percentages of variability accounted for either by phenotypic correlations or by 
predictive models were obtained by the correlations between per se and testcross data (Table 5).  
However, the predictive models came closer to accounting for the variability accounted for by 
phenotypic correlations than in the comparisons between years.  In fact, only half of the comparisons 
showed a significant increase of the phenotypic correlations over the predicted models with epistasis.   
  
   Because inclusion of epistatic terms consistently and significantly increased the correlation of 
observed and predicted performance regardless of the comparisons being made, we believe that 
consideration of epistasis in predictive models has considerable merit.   

 
   Conclusions and Implications 

 
Adding epistasis to a model for predicting performance significantly increased predictive 

power for oil, protein and starch in per se and testcross progenies in two different crosses, IHOxILO 
and IHPxILP when all data were used to develop a model, when one year’s data were used to predict a 
second year, and when per se progenies were used to predict testcross performance. Thus, from a plant 
breeding perspective, epistasis is important.  Increasing the probability level for identifying significant 
markers and epistatic interactions from P=0.001 to P=0.01 significantly increased the predictive power 
for all comparisons. The increase to P=0.05 increased predictive power for all traits in the NOEP 
model and for half the traits in the EP model. This likely resulted from the inability to detect relatively 
small epistatic interactions at the 0.001 and 0.01 probability levels. 
 

The finding that nearly all markers used were involved in a significant interaction at the 0.05 
level and that as many as 75% of the significant interactions included at least one marker not found 
significant in single marker analysis suggests that genes controlling the traits studied may be a part of a 



 

complex gene network involving segments of nearly all parts of all chromosomes.  This further stresses 
the importance of evaluating all possible marker interactions rather than only those between markers 
significant in single marker analysis.  

 
The mean percentages of variability accounted for at the 0.05 level for all traits and the 

epistatic model, both when all data were used and when one year’s data were used to predict a second 
year, were large enough to suggest epistatic models had predictive power as good as early testing and 
thus could be useful in plant breeding. However, some caution is needed. The progenies studied 
resulted from random-mating the IHOxILO cross 10 times and the IHPxILP cross 7 times. In most 
corn breeding programs, marker and performance data are collected from early generation progenies or 
from doubled haploid lines, neither of which have been random mated.  Thus the unbroken linkage 
blocks are much larger than in random-mated progenies. These larger linkage blocks may contain 
blocks of genes for which interactions will average out and the usefulness of the epistatic model may 
be lower. This question merits further research. Dudley and Johnson (2009) suggested a second caution 
concerning effects of environments. However, correlations using data obtained in one year to predict 
performance in a second year were nearly as large as those obtained when all data were used in the 
predictive model. A third caution involves the number of progenies evaluated. In this study, 500 
progenies were evaluated in each cross. This is much larger than the usual number of progenies used in 
a marker based corn breeding program. Thus, it may be necessary to increase the number of progenies 
to successfully identify epistatic interactions useful in a breeding program. Despite these limitations, 
the predictive power of the epistatic model when markers and interactions were identified at the 
P=0.05 level is high enough to justify considering inclusion of epistatic effects in marker assisted 
breeding programs. 
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Table 1.  Summary statistics from IHPxILP and IHOxILO studies. 
 
 
Trait 

 
Cross 

 
Generation‡ 

 
Mean§ 
 

Genetic 
Variance 

 
H2† 

C.V. 
§ (%) 

    g kg-1   
Oil IHOxILO PS 70.6 119.0** 0.93 9.7 
 IHOxILO TC 49.2   10.2** 0.94 4.5 
       
 IHPxILP PS 44.1     9.88** 0.89 8.7 
 IHPxILP TC 45.3     3.03** 0.77 2.3 
       
Protein IHOxILO PS 129.0   71.7** 0.88 6.1 
 IHOxILO TC 126.0   21.4** 0.77 6.1 
       
 IHPxILP PS 134.0   219.0** 0.92 6.7 
 IHPxILP TC 103.0     32.0** 0.83 6.7 
       
Starch IHOxILO PS 585.0 716.0** 0.84 4.4 
 IHOxILO TC 677.0   33.2** 0.83 1.0 
       
 IHPxILP PS 681.0 114.0** 0.94 1.0 
 IHPxILP TC 699.0   23.2** 0.79 0.8 
**=Significant at the 0.01 probability level. 
 † = heritability on an entry mean basis.   
‡ PS=per se generation, TC=testcross generation.  
§ C.V.=coefficient of variation. 
 



 

Table 2.  Change in % variability accounted for from P=0.001 to P=0.01 (G001-01), from  
P=0.01 to P=0.05 (G01-05) and from P=0.05 to P=1.0 (G05-1) for non-epistatic (NOEP)  
and epistatic (EP) models. 
     
Trait GEN CROSS† G00101NOEP G00101EP G0105NOEP G0105EP G051NOEP‡
Oil PS HOLO 13.9* 17.4* 5.2*   3.9* -0.7ns 
Oil PS HPLP   3.8* 20.4* 5.8*   0.2ns   0.8ns 
        
Oil TC HOLO   6.7* 14.3* 6.0*   2.8*   1.2ns 
Oil TC HPLP   3.0* 18.9* 5.4*   3.1*   3.4* 
        
Protein PS HOLO   8.7* 16.4* 5.9*   1.5ns 17.6* 
Protein PS HPLP   4.0* 13.9* 2.4*   2.2*   1.8ns 
        
Protein TC HOLO   9.4* 30.9* 7.0* -0.6ns   0.5ns 
Protein TC HPLP   5.1* 18.1* 1.7*   0.0ns   3.0* 
        
Starch PS HOLO   9.1* 12.3* 2.9*   7.0*   9.7* 
Starch PS HPLP   0.7ns 11.4* 4.3*   1.9*   0.0ns 
        
Starch TC HOLO   6.6* 21.8* 6.4*   2.3*   1.9* 
Starch TC HPLP 13.6* 34.0* 1.8*   1.5*   2.1* 
        
Yield TC HOLO   9.5* 21.1* 3.6*   1.5ns   0.5ns 
Yield TC HPLP   7.9* 36.0* 3.7*   1.1ns -2.0* 

*=95% confidence intervals between EP and NOEP models did not overlap 
†  HOLO=IHOxILO; HPLP=IHPxILP. 

‡ Only the NOEP model was available for the difference between P=0.05 and P=1.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 3.  Percentage of variability accounted for by prediction model.  Markers and interactions in the model selected at three different 
probability levels (0.001, 0.01, 0.05).  Values are averages of 500 bootstrap samples.PS and TC refer to per se and testcross progeny, 
respectively.  NOEP, EP, and EPGAIN refer to models without epistasis, with epistasis, and EP-NOEP, respectively. 
_________________________________________________________________________________________________________ 
        P=0.001                       P=0.01                       P=0.05                    P=1.0‡ 
Trait Progeny Cross†  NOEP EP EPGAIN NOEP EP EPGAIN  NOEP EP EPGAIN NOEP
Oil PS HOLO 28.6 36.6   8.0* 42.5 54.0 11.5*  47.7 57.9 10.2* 47.1 
 PS HPLP 32.9 47.5 14.5* 36.7 67.9 31.2*  42.5 68.1 25.6* 43.3 
              
 TC HOLO 38.6 45.6   7.0* 45.3 59.9 14.6*  51.3 62.7 11.5* 52.4 
 TC HPLP 29.9 45.4 15.5* 32.9 64.3 31.4*  38.3 67.4 29.1* 41.7 
              
Protein PS HOLO 20.8 27.1   6.4* 29.5 43.6 14.1*  35.4 45.0   9.6* 53.0 
 PS HPLP 46.0 56.0 10.0* 50.0 69.9 19.9*  52.4 72.1 19.7* 54.2 
              
 TC HOLO 22.4 23.1   0.8* 31.8 54.0 22.2*  38.8 53.4 14.6* 39.3 
 TC HPLP 42.5 51.0   8.5* 47.6 69.1 21.4*  49.3 69.1 19.8* 52.3 
              
Starch PS HOLO 33.1 35.0   1.9* 42.1 47.3   5.2*  45.0 54.3   9.3* 54.8 
 PS HPLP 49.6 60.2 10.7* 50.3 71.6 21.3*  54.6 73.4 18.8* 54.6 
              
 TC HOLO 33.2 34.9   1.8* 39.8 56.7 16.9*  46.2 59.0 12.7* 48.2 
 TC HPLP 34.5 36.7   2.3* 48.0 70.7 22.7*  49.8 72.2 22.4* 52.0 
 
*=95% confidence intervals between EP and NOEP models did not overlap. †  HOLO=IHOxILO; HPLP=IHPxILP; ‡=model with all 
single markers included but no epistatic interactions. 
 
 
 
 
 
 
 
 



 

Table 4.  Percent of variability account for by a marker model based on one year used to predict a 
second year.  Means of 100 bootstrap samples.  Data from the first year in the years column was used 
to predict performance in the second year.   
______________________________________________________________________________
                                                                                                                                                        
                                              Predicted†                                     Phenotypic ‡            
  
Trait Gen Cross Years NOEP EP EPGAIN PHEN NOEPGAIN EPGAIN 
Oil PS HOLO 2001V2002 48.3 70.1     21.8* 75.9    27.6* 5.8* 
Oil PS HOLO 2002V2001 49.8 70.7     20.9* 75.6    25.8* 4.9* 
           
Oil TC HOLO 2001V2002 52.6 76.5     23.9* 79.7    27.1* 3.2* 
Oil TC HOLO 2002V2001 53.8 74.9     21.1* 79.5    25.7* 4.6* 
           
Protein PS HOLO 2001V2002 26.6 55.2     28.6* 64.3    37.7* 9.1* 
Protein PS HOLO 2002V2001 34.3 56.0     21.7* 64.1    29.8* 8.1* 
           
Protein TC HOLO 2001V2002 24.8 36.3     11.5* 38.2    13.4* 1.9* 
Protein TC HOLO 2002V2001 25.3 37.6     12.3* 37.9    12.6* 0.3ns 
           
Starch PS HOLO 2001V2002 39.8 49.8     10.0* 54.3    14.5* 4.5* 
Starch PS HOLO 2002V2001 33.9 48.8     14.9* 54.2    20.3* 5.4* 
           
Starch TC HOLO 2001V2002 35.5 50.2     14.7* 53.2    17.7* 3.0* 
Starch TC HOLO 2002V2001 35.4 51.0     15.6* 53.1    17.7* 2.1* 
           
Oil PS HPLP 2002V2003         42.7 51.2       8.5* 64.9    22.2* 13.7* 
Oil PS HPLP 2003V2002         43.0 51.3       8.3* 64.9    21.9* 13.6* 
           
Protein PS HPLP 2002V2003 54.4 60.9       6.5* 75.8    21.4* 14.9* 
Protein PS HPLP 2003V2002 53.4 61.0       7.6* 75.8    22.4* 14.8* 
           
Starch PS HPLP 2002V2003 57.1 62.9       5.8* 78.3    21.2* 15.4* 
Starch PS HPLP 2003V2002 53.3 63.5      10.2* 78.3    22.5* 14.8* 

*=Gain in % variability significant as measured by non-overlapping 95% confidence intervals.  Under 
predicted columns gain is measured as difference between EP and NOEP models.  Under Phenotypic 
columns gain is measured as the difference between % variability accounted for by phenotypic 
correlation and that accounted for by the NOEP model (NOEPGAIN) or by the difference between the 
phenotypic correlation and the EP model (EPGAIN). 
†   Data from predicted correlations between years.  ‡Data from phenotypic correlations. 



 

Table 5.  Percent of variability accounted for in testcrosses by predicted values based on EP  
and NOEP models from per se data and by phenotypic correlations. Mean of 100 bootstrap samples.  
_________________________________________________________________________ 
                                                    Predicted‡                                      Phenotypic§ 
Trait Cross†  NOEP EP EPGAIN PHEN NOEPGAIN EPGAIN
OIL HOLO  41.4 51.6     10.2* 53.1          11.9* 1.4* 
OIL HPLP  30.0 39.8       9.8* 39.7            9.3* 0.3ns 
       
PROTEIN HOLO  16.0 23.9       7.9* 24.6            8.6* 0.7ns 
PROTEIN HPLP  45.5 51.7       6.2* 52.2            6.7* 0.5ns 
       
STARCH HOLO  13.7 15.9       2.2* 19.9            6.2* 4.0* 
STARCH HPLP  40.1 44.8       4.7* 48.7            8.6* 3.9* 

 

*=significant gain based on non-overlapping 95% confidence intervals. 
† HOLO=IHOxILO, HPLP=IHPxILP.‡ 
‡ NOEP=% variability accounted for by the non-epistatic model, EP=% accounted for by the epistatic 
model; EPGAIN= gain by including epistasis in the model. 
§ PHEN=% variability accounted for by the phenotypic correlation between per se and testcross data; 
  NOEPGAIN=gain of phenotypic correlation over the NOEP model, EPGAIN=gain of phenotypic 
correlation over the EP model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 6.  Number of significant interactions at 0.05 level (NI), number of markers significant at 0.05 
level (NM), number of markers included in at least one significant interaction (NMI), and percentage 
of significant interactions with 0, 1, or 2 significant markers (NSMI) in the interaction. 
________________________________________________________________ 
                           Number                        NSMI 
Trait Cross† Generation  NI NM NMI 0 1 2 
     
Oil HOLO PS  6303 197 476 34.5 48.9 16.6 
 HPLP PS  8008 249 498 24.1 49.1 26.8 
          
Protein HOLO PS  6432 204 476 33.4 50.4 16.2 
 HPLP PS  7844 226 498 16.8 48.6 34.7 
          
Starch HOLO PS  6183 193 475 34.7 46.7 18.6 
 HPLP PS  7260 295 497 17.9 48.6 33.5 
          
Oil HOLO TC  6410 181 476 31.4 50.0 18.6 
 HPLP TC  6800 292 497 29.0 49.1 21.9 
          
Protein HOLO TC  6142 194 476 35.4 48.4 16.2 
 HPLP TC  8282 291 497 17.7 48.8 33.5 
          
Starch HOLO TC  6469 190 476 34.9 49.3 15.8 
 HPLP TC  7302 268 497 21.3 48.9 29.8 

†  HOLO=IHOxILO; HPLP=IHPxILP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


